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A global qualitative investigation of the equation of a pendulum with a vertically oscillating point of suspension in the non- 
conservative case close to the non-linear integrable case, is presented. The transition from non-linear resonance to parametric 
resonance when the frequency of oscillation of the point of suspension is changed is analysed. The behaviour of the solutions 
both in the oscillatory end rotational regions and also in the neighbourhood of the unperturbed separatrice is considered. The 
condition for a quasi-at~Iraetor to exist is established. The results of a numerical analysis, which agree with the theoretical results 
and illustrate them, are presented. 

A pendulum with an oscillating point suspension is a classical example of a problem in which parametric 
resonance is observed. A considerable number of papers have been published on this problem (for 
example, [1, 2]). Wc also note problems on the flexural oscillations of a straight rod loaded with a periodic 
longitudinal force [3], the motion of a charged particle (an electron) in the field of two travelling waves 
[4], etc. The occun'ence of parametric resonance in such systems is related to the loss in stability of a 
moving point of the corresponding Poinear6 mapping and is therefore usually described by a system 
that is linearized irt the neighbourhood of this point. 

Problems of the existence and stability of resonant periodic motions have recently been solved (see, 
for example, [1, 2, 5]). There is also a theory which enables the global behaviour of the solutions of 
such systems to be investigated in the quasi-integrable ease in regions not containing states of equilibrium 
and the separatdc~:s of the unperturbed system [6-8]. An analysis of the resonance zones occupies a 
central place in this theory. It is of interest to investigate the behaviour of the parametric system when 
the resonance ring zone contracts to a point, i.e. bifurcations are established which originate when a 
transition occurs from the usual non-linear resonance to parametric resonance. This problem was 
considered in [9] for non-parametric systems. Local rearrangements of the phase pattern of truncated 
systems ("principal deformations of q-equivariant vector fields") have also been investigated [10] in the 
neighbourhood of this point. The present paper is also devoted to solving this problem using the example 
of a non-conservatiive pendulum with a vertically oscillating point of suspension. 

In the quasi-integrable extremely non-linear case we also solve the problem of the motion of a 
pendulum in global regions (both oscillatory and rotational) and in the neighbourhood of the 
unperturbed separatfice, i.e. a global investigation is carded out of a pendulum with an oscillating point 
of suspension. A similar investigation was carried out for Duffmg's equation [11] (see also [6]). Hence, 
only the main features are examined in detail in the investigation. 

1. FORMULATION OF THE PROBLEM. THE QUASI- INTEGRABLE 
CASE 

The equation of motion of a pendulum with a vertically oscillating point of suspension has the form, 
with certain simplitying assumptions, 

(J + ma2)0 "" + marv2[g/(rv 2) + cos vt] sin 0 + 50" = 0 (1.1) 

where J is the moment of inertia of the pendulum about the axis passing through the centre of mass 
perpendicular to the plane of oscillations, 5 is the coefficient of viscous friction, m is the mass of 
the pendulum, a is its length, r is the amplitude of the oscillations of the point of suspension, g is 
the acceleration due to gravity and 0 is the angle of deflection of the pendulum from the position of 
equilibrium. 
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Making the replacement of time ~/(mag/(J + ma2)) t ~ t and of the coordinate 0 ~ x in (1.1) we 
obtain the equation 

x + sin x + Pl cos13tsin x + p2x" = 0 (1.2) 

Pl =rv2 I g, P2 =~/ 4mag(J +ma2), ~=v~/(J +nu~2)l(mag) 

We will complicate the model further and consider the equation 

x'" + sin x + pj cos ~t sin x + (p2 + P.~ cos x)x = 0 (1.3) 

the phase space of which is R 1 ~ S 1 ~ S 1. The termpacos (x)x appears, for example, in the case of a 
pendulum in which the resistance force is produced by a vertically oriented plate perpendicular to the 
plane of oscillations. Note also that for a mathematical pendulum 13 = v~l(a/g). 

Equation (1.3) is not amenable to an analytic global investigation for arbitrary parameters. An equation 
of the form (1.2) has been investigated analytically in the quasi-linear case (see, for example, [1, 2]), 
and local problems of the existence and stability of periodic motions have been solved (see, for example, 
[2, 5]), as well as the problem of the existence of an irregular structure or doubly asymptotic solutions 
(see, for example, [4, 12-15]). However there are no publications giving a global analysis of Eq. (1.3) 
in the extremely non-linear quasi-integrable case (when the parameterspi are small). In this paper we 
attempt to fdl this gap. 

Consider Eq. (1.3) in the case close to integrable, i.e. for small values of the parameterspi (i = 1, 2, 
3). We will putpi = --eCi, where e is a small parameter. Then the initial equation (1.3) takes the form 

x +sinx = e[Ct cos13tsinx+tC2 +C~ cosx)x'l (1.4) 

It is clear that in (1.4) we can dispense with one parameter and consider a two-parametric family of 
vector fields. However, for convenience we will not do this. 

An equation of the form (1.4) we can dispense with one parameter and consider a two-parametric 
family of vector fields. However, for convenience we will not do this. 

An equation of the form (1.4) in the conservative case when C2 = (73 = 0, has been considered in 
many publications. Thus, the ease when 13 -= 2 for small angles of defleetionx was considered in [1]. The 
criterion for resonances to overlap was used in [4] to estimate the width of the "ergodie layer", and the 
existence of doubly asymptotic (homodinic) solutions was investigated in [13, 14]. A complete analysis 
of this problem was given in [14] without assuming the parameter e to be small. The existence of 
homodinic solutions in Eq. (1.4) is an obstacle to its integrability [14, 15]. The problem of the existence 
of limit cycles and quasi-attractors in an equation similar in form to (1.4) was solved in [16]. 

We know that the unperturbed equationx'" + sinx = 0 allows of a first integral (the energy integral) 

H(x , y ) - y  2 12-cosx=h=const, y=x  

Oscillatory motions of the pendulum correspond to the values h e (-1, 1), while rotational motions 
correspond to values of h > 1. A feature of the equation of a mathematical pendulum is the fact that 
the period x depends on h in the oscillatory region 

"¢(h)=4K(k), k2 =p=(l+h)/2,  - l < h < l  (1.5) 

Here K = K(k) is the complete elliptic integral of the first kind and k is its modulus. 
It follows from (1.5) that the period x changes considerably only for values of h close to unity, 

i.e. in the neighbourhood of the separatrice. Hence, small intervals with respect to the period x, defin- 
ing the width of the resonance zone, lead to fairly large intervals with respect to the coordinate x. It 
should also be recalled that the value of the natural frequency c0(h) = 2~/x when h = -1 is equal to unity, 
whereas for the initial equation it is equal to ~/(mag/(J + ma2)). 

2. THE S T R U C T U R E  OF THE R E S O N A N C E  ZONES 

When investigating the perturbed equation we will dwell primarily on the problem of the structure 
of the resonance zones situated in the regions G 1 = {(x, :~): -1 < h_ <- H(x, y) ~< h+ < 1} and 
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G 2 -- {(x,~): H(x,y) ~> h. > 1}. The condition for resonance x(h~) = (p/q)(2~[~), wherep and q are 
relatively prime integers, determines the resonance energy levels: H(x, y) = h m. 

The structure of the individual resonance zones 

Uqi ={(x,k): hvq -'~'dC< H(x,y)<hpq +'~'C}, C=const 

is described (to terras of the order of O(e3/2)) by a pendulum-type equation [6-8] 

d2x) du  (2.1) bA( ~;ht, q ) = ij.O(,o;hp q )2~ d.c 2 

Here 

• _ I 2~,  qtp 

1 2.r'l'Of(x,k,@)d~ 

(2.2) 

(2.3) 

andx = x(¢ + qg/P; h~), Yc = $c(~ + qfp/p; hm) is the solution of the unperturbed equation at the level 

We usexl the actkm (1)--angle (0), 0 = "o + qcp/p variables when deriving (2.1). 
The unperturbed solution for the oscillatory region (-1 < h < 1) and the rotational region (h > 1) 

has the form 

x( O ) = 2 ~ s i n l  ksn " ~ -  1, k = y = 2 k c n  2KO O=mt, m - I < h < l  (2.4) 
1¢ ' = ' ~ "  

x(O) -" 2am KO + 2 d n  2/(0 g k2 2 , y =  , to = h > l  
x k ~ = ~ "  l + h '  

Since the funetionsA and o are different in the oscillatory and the rotational regions, we will introduce 
the notation A(s)(~, heq ), o(S)(a), heq ), where s = 1 corresponds to the oscillatory region and s = 2 
corresponds to the ~rotational region. 

The funetionsA 0), o (s) are periodic in ~ with the least period 2~/p [6]. Since in the ease considered 
the divergence of the vector field of Eq. (1.4) does not contain terms which depend explicitly on the 
time t, the quantity o is indel~ndent of a) [17], i.e. o = const. 

We will calculate A (1) and o (1). It follows from (2.2) and the results obtained previously [16] that 

Ali i=2Ci--P- ' -2~cosP(O- '°)  sn2KO dn 2KO cn 2KO do+ 8 [Q~|~(p)+C3F~(~)(p)] (2.5) 
x, alq o q it it ~ q~ 

~ l l  = ( p  _ l)K(k) + E(k), FI ¢|~ = [(! - p)K(k) + (2p - 1)E(k)] 13, p = k s 

where E = E(k) is the complete elliptic integral of the second kind. Evaluation of the integral in (2.5) 
gives 

A {I) = C a F~ ') sin(pil)+ B {|} (2.6) 

F(i) [0  for p ~ 2 ( 2 n - I )  and/or q>!  

t, =t8[$2a~#21p for p = 2 ( 2 n - l )  and q=l,  n=l,2 .... 

( B<,, 
a ' l i l - O t P t l '  Ot=exP t -  K(-~'ff) J' 1I " 
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where B (1) is the generating Poincar6-Pontryagin function for the autonomous equation (C 1 = 0, for 
more detail on the generating function see [6, 7]). 

From (2.3) we obtain 

ff0)(9,ht,~) = C 2 + C.~ ( 2 E -  K)I K 

Similar calculations for the rotational region give 

A t2) = C IFvt2) sin pa)+ B t2) (2.7) 

where p is an odd number and 

_ l  0 for p ~ 2 n - I  and/or q > l  
rt__.p2)_[4132a~l p for p = 2 n - l  and q = l ,  n = l , 2  .... 

a p12 B(2) 8 t r  ~(2) ~_ 
= , = - W ' ~ " 2 " o  ~c.~ 2~1 

av l - a  v p"n  

F0 t2) = E(p), Fi t2) = [2(p - 1)K + (2 - p)E] / (3p) 

cy t2) (~ ,h~)  = C 2 + C 3 ( ( p -  2)K + 2E) / (pK) 

It follows from (2.6)-(2.7) that the width of the resonance zone, defined by the quantity Cl1"(~ ), falls 
rapidly asp increases. Hence, when C~ + C~ * 0 it is difficult to detect resonance modes withp > 2 in 
the oscillatory region and withp > 1 in the rotational region. The condition for a resonance mode with 
p = 2 to exist by (2.6) has the form J C1F(s) I > J B 0) I. For example, for J3 = 1.6 it reduces to the condition 
J C1 [ > alC2 + a2C3, al ~- 9.71, a2 -~ 6.41. 

The change from the truncated system (2.1) to the initial system (1.4) gives a well-known result: if 
the truncated system (2.1) is rough in the Andronov-Pontryagin sense, then small corrections which 
manifest themselves when changing to the initial system do not change the behaviour of the solutions 
to any great extent (see, for example, [7, 11] for more detail). 

By virtue of the condition t~(S)(p.), 0 whenB(S)(p.) = 0, Theorem 1 from [8], which defines the global 
qualitative behaviour of the solutions in the regions G (s) (s = 1, 2), holds. 

The behaviour of the invariant curves of the Poincar6 mapping for Eq. (1.3), obtained on a computer, 
is shown in Figs 1 and 2 for [3 = 1.6. In Fig. l(a) we show the case of synchronization of the oscillations 
at the subharmonie withp = 2 (B(h21) = 0;pl  = 0.1,p2 = 0.07,p3 = -0.1), and in Fig. l(b) we show 
the partially traversed resonance wi thp  = 2 (Pl = 0.1,p2 = 1/30,p3 = -0.1). In Fig. 2 w e  show the 
behaviour of the invariant curves of the Poincar6 mapping in the rotational region in the upper half- 
cylinder (x rood 27r, y ; y  > 0 ) for  Eq. (1 .3)forpl  = 0.1,p2 = 0.015 andp3 = -0.1 (the pattern of the 
behaviour of the invariant curves on the lower half-cylinder (y < 0) is symmetrical to the pattern of 
their behaviour on the upper half-cylinder). In this case synchronization of the oscillations occurs on 
axial resonance (p = 1, q = 1). The resonance zone for the fundamental resonance is situated in the 
region of the separatrices of the fixed point (n, 0). As the frequency [3 increases the resonance level 
H(x, y) = hll  is raised upwards along the cylinder in accordance with the formula for the natural 
frequency and the resonance condition. General agreement with the theoretical results can be seen. 
However, the averaged system (2.1) does not determine the irregular way in which the resonance mode 
becomes established, shown in Fig. 2. The arrows in Figs 1 and 2 indicate the direction of motion as t 
increases. 

Note that by (2.1), (2.6) and (2.7), a change in the sign of the parameterp  will change the saddle 
points in the resonance zones to "stable" points, while the "stable" points will change into saddle points. 
Thus, in the case of resonance withp = 2 and q = I this leads to rotation of the pattern of the behaviour 
of the invariant curves of the Poincar6 mapping in the resonance zone by 90 ° in a clockwise direction. 

3. THE N E I G H B O U R H O O D  OF THE O R I G I N  OF C O O R D I N A T E S  

We put U,, = {(x,y): 0 ~< H(x,y) ~< Ce TM} and make the following change in Eq. (1.4) 

X = ~ l l n ~ ,  y = X. = g l l n l~  
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As a result we obtain the system 

~=rl, rl'=-~ +e.[Cl~COS~t+(C2 +C.~)ll]+~.21n~316-~l+2/n(Cl~3 cos~t16+~21"l)+... (3.1) 

System (3.1) is de.fined in D ® S 1, where D is a certain region from R 2. 
In the neighbourhood if Ul(n = 1) system (3.1) takes the form 

~ =11, rl =-~+e[Ct~cosf~t+(C2 +C3)~]+O(e 2) (3.2) 

If we neglect terms of the order of O(e 2) in (3.2) we obtain a Mathieu equation with an additional 
term which takes vi,,;cous friction into account. Clearly, using the linear equation, we cannot obtain non- 
linear effects related to the transition from non-linear resonance to parametric resonance. We will 
therefore consider a wider neighbourhood U2 (n = 2) of the origin of coordinates. In this case, neglecting 
terms O(e 2) in (3.1)we obtain a system for which we will consider the resonance cases when to = 1 = 
q~/p, where p and q are relatively prime integers. To investigate the bifurcations connected with the 
transition from parametric resonance to ordinary resonance we will introduce the detuning 1-  q~/p = 
~he. As a result, the system considered can be rewritten in the form 

~" = (qi] / P)~ + Tl~ 

11 =-(q~l p)~+g[Cl~cos~t+(C 2 + C3)rI -TI~+~ 3 /6 ]  -" (3.3) 

We used the action (0--angle(O) variables [6, 7] when deriving Eq. (2.1). We will also use these variables 
here. Since the unperturbed system is linear, this replacement takes the simple form ~ = ~/(2/) sin O, 
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11 = ~/(2/) cos O. After this replacement, system (3.3) can be written in the form 

[ =eF(l,O,tp), O=qf~lp-e.R(l,O,q~), tp' =~ (3.4) 

F=21GcosO-'t l 'x[~sinO, R = G s i n O + ) '  1 c o s ~ / ~ -  

G = C I sin Ocosq~+(C 2 + C3)cosO-yt  sin ~ +(1 /3)sin 3 

We will introduce the "resonance phase" W = x~ - qg/P in (3.4) and average the system obtained over 
one "fast" variable q~. As a result we obtain the following two-dimensional autonomous system 

u = e[(C t / 2)u sin(2~) + (C 2 + C 3)u] (3.5) 

~" =E[(C l /4)s in(2"o)-u/8-Tl /2]  

fo rp  = 2 and q = 1, and the system 

u" =e( C2 + Q~)u, "o" = e ( - u / 8 - ~ / t / 2 )  (3.6) 

for p ~ 2 and/or q > 1. As we know [6], u = I + O(e), x~ = ¥ + O(e2). It follows from (3.5) and 
(3.6) that in the neighbourhood of U2 in this approximation there is only one resonance withp = 2 and 
q = l .  

We now return to system (3.5). The cylinder {~ mod (n), u} serves as the phase space of system (3.5). 
This system is a Hamiltonian system when C 2 = C 3 = 0, T1 = 0 with Hamiltonian H(u, ~) = -eClu 
cos (29)/4 + eu2/16. 

/./ 

IE  

(a) 

U 

/ (b) 

O u . ~ / z  

Fig. 3. 
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It is not particularly difficult to investigate system (3.5) when C 2 + C 2 ~ 0 and for different values 
of the detuning T1 ,,;ince, by the Bendixon criterion, there are no limit cycles. The most characteristic 
rough phase patterns (in the Andronov-Pontryagin sense) arc shown in Fig. 3, where in addition to 
the phase patterns in the (u, ~) plane we also show the corresponding phase patterns in Cartesian 
coordinates (x,y = :~). Figure 3(a) corresponds to the case when Y1 > Y* > 0, y. = ~(C 2 - 4(C2 + C3)2)/2 
in system (3.5), Fig. 3(b) corresponds to the case when I T11 ~< Y*, and Fig. 3(c) corresponds to the case 
when I Y11 > Y,, Y1 < 0. In addition, in all cases C2 + Ca < 0. 

When the parameter e is not small, the Poincar6 mapping in the neighbourhood of the origin of 
coordinate leads to phase patterns in the (x, y) plane corresponding to Fig. 143 in [10] for the "main 
deformation of the 2-equivalent field". Note that the main deformations from [10] do not give the phase 
pattern shown in Fig. 3(c) and its modifications when there is a limit cycle. The latter corresponds to 
the passage of a cycle through the resonance zone [7, 8] and is naturally not described by the classical 
local theory. 

4. THE N E I G H B O U R H O O D  OF THE SEPARATRICE 

As we know, a homoclinic Poincar6 structure and the related irregular behaviour of the solutions 
can exist in the neighbourhood of the unperturbed separatrice. The condition for such a structure to 
exist can be obtained using the Mel'nikov function [18] A~(t') = eAl(t') + O(e2), where 

2C1~2 E. = 4g(C2 + - ~ )  A I (t') = Esin(13t') + Eo; E = - sh(Itl3 / 2)' 

Here we have used the unperturbed solution on the separatrice obtained from (2.4) with k = 1. 
Note that the function which solves the problem of the existence of a homoclinic structure can be 

found as the limit L of the function 2r~pA(-~t'; he1 ) as he1 =~ 1, where -~t' replaces the argument Fo 
inA. The latter is connected with the fact that the integrands in the definition of A (see formula (2.2)) 
and in the definition of the Mel'nikov function have the same form with several different arguments 
([l(t - f )  in A1 and t + p~/q~ inA). These functions obviously contain the same harmonics. 

The limit L can be calculated either as h =, 1 - 0 (from the oscillatory region, we denote it by L-), 
or as h ~ 1 + 0 (from the rotational region, we denote it by L+). In our case L- = 2L +. A similar 
relation is connected with the fact that in the unperturbed equation the limit of the oscillatory region 
immediately gives two branches of the separatrice (a separatrice contour), whereas the limit of 
the rotational regitm only gives one separatrice loop. Then, in the autonomous equation (1.4) (C1 = 0) 
we can determine the continuous global generating Poincar6--Pontryagin function for all values 
o fh  e (-1, ~). 

The quantity E represents the value of the splitting of the separatrice in the conservative case, 
and also in the non-conservative case when (72 = -C3/3. When I E [ = I E. I we have (up to terms O(e)) 
contact between the corresponding separatfices and the fixed point (n, 0). 

Note that here, as for Duffing's equation [11], a non-trivial hyperbolic set appears just before the 
instant of contact. When the condition C2 = -C3/3, C 2 + C 2 ~ 0 is satisfied in the perturbed autonomous 
system (C1 = 0) tile limit cycle forms a separatrice contour. In a non-autonomous system (C1 ;e 0) in 
this case a quasi-alLtractor exists [16] if e6(})(1) = e(C2 - C3) < 0. 

Note that the "amplitude" E decreases exponentially as the frequency increases. Hence, the width 
(with respect to the energy h) of the neighbourhood containing the quasi-attractor decreases rapidly 
as 13 increases. When I E I < J E. I + O(e) the separatrices of the fixed point (n, 0) do not intersect. 
However, they intersect with the separatrices of the hyperbolic periodic (fixed) points situated in the 
neighbourhoods of the split resonance levels (if such exist). 

It is this situation that is shown in Fig. l(a). Similar intersections of the separatrices give heteroclinic 
points. In Fig. l(b) we show a "quasi-attractor" (B(1)(1) = B(2)(1) = 0), obtained on a computer for 
Eq. (1.3) withpl = 0.1,p2 = 1/3,p3 = -0.1; [3 = 1.6. This quasi-attractor contains about 5000 iterations 
of one initial point. The fairly large size of the "width" if the neighbourhood of the quasi-attractor for 
a small amplitude Pl of the external force is particularly noteworthy (compare with [16]). In Fig. 1('o) 
we also show a partially traversed resonance with p = 2 and q = 1. The regions of attraction of the 
resonance mode is very thin (it merges with the spiral lines in Fig. l(b). Hence, if we take the initial 
point in the neighbourhood of the origin of coordinates, then, with a probability close to unity, an 
irregular mode corresponding to the quasi-attractor will be established in the system. 
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5.  C O N C L U S I O N  

Formulae (2.6)-(2.7) enable us to obtain quantitative estimates of the existence of any resonance 
mode and the position of the corresponding resonance zone. The number of split resonances when C~ 
+ (723 ¢ 0 is limited. For actual motions of the pendulum (1.3), when small non-conservative forces are 
present, there will most probably be a single resonance mode with p = 2 and q = 1 in the oscillatory 
region, and in the rotational region with p = 1 and q = 1. 

Note also the following features in the investigation of Eqs (1.3) and (1.4). 
1. The change from Fig. 3(a) to Fig. 3(c) corresponds to two bifurcations of"period doubling", where 

the transition from parametric resonance (Fig. 3b) to ordinary non-linear resonance (Fig. 3c) is related 
to the bifurcation of the production from a complex fixed saddle point of two periodic saddle points 
(the period is equal to two) and a node (a focus). 

2. The bifurcation of the quasi-attractor appearing in the neighbourhood of the unperturbed 
separatrice (Fig. lb) is the most interesting. It occurs for any amplitude of the external force (the 
parameter C1): it is sufficient solely that BtSJ(1) = 0, (C2 = -C3~3), e(C2 - (?3) < 0 for example, C2 = 
-1/30, (?3 = 0.1, e > 0. 

3. No resonance with q > 1 and odd p in the oscillatory region or resonances with q > 1 and even 
p in the rotational region occur in the quasi-integrable non-conservative case. 

This research was carried out with financial support from the "University of Russia" programme 
(Fundamental Problems in Mathematics and Mechanics, 3.3.20) and the Russian Foundation for Basic 
Research. 
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